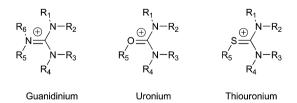
Ionic liquid S-alkylthiouronium salts†


Mahpuzah Abai, John D. Holbrey,* Robin D. Rogers‡ and Geetha Srinivasan

Received (in Montpellier, France) 5th February 2010, Accepted 26th April 2010 DOI: 10.1039/c0nj00098a

The preparation and characterisation of a series of ionic liquids based on S-alkylthiouronium cations prepared from thiourea, 1,3-dimethylthiourea, 1,3-diethylthiourea and 1,3-tetramethylthiourea coupled with bis{(trifluoromethane)sulfonyl}imide, bromide, methylsulfate or ethylsulfate anions are reported. All are liquids at room temperature or solids with melting points close to room temperature, except for the bromide salts, which have melting points below 92 °C. Systematic variation in the N- and S-alkyl substituents demonstrates how the physical properties of these ionic liquids can be readily controlled. The mutual miscibility limits of representative examples with octane, dodecane and toluene have been determined as a function of temperature, and the extraction of dibenzothiophene from dodecane as a model for desulfurisation of diesel has been investigated.

Ionic liquids¹ are of significant interest as alternative solvents for a wide range of applications from electrochemistry, through organic synthesis and catalysis to biomass processing and nanomaterial fabrication.² The reduced vapour pressure of ionic liquids, the potential to design in *a priori* low toxicity, availability of wide liquid ranges and high thermal and electrochemical stability provide this impetus. The search for, and investigation of, new ionic liquids is driven by efforts to understand the relationships between chemical structure and physical properties,³ and to actively develop ionic liquids with specific, tailored functionality.⁴

While ionic liquids containing 1,3-dialkylimidazolium cations have been the most extensively studied, many other cation families are known and these can generally be categorised as unsaturated or saturated and cyclic or acyclic systems. Dialkylimidazolium, dialkylpyrrolidinium, and tetraalkylammonium cations are examples of cyclic aromatic (unsaturated), cyclic non-aromatic (saturated), and cyclic saturated cations, respectively, and along with pyridinium and phosphonium-based systems represent the bulk of known organic ionic liquids. In contrast, guanidinium, uronium and thiouronium cations (Fig. 1) have a planar, charge-delocalised acyclic core and represent the fourth type of cation configuration available.

Fig. 1 Structures of guanidinium, uronium and thiouronium cations (showing a single canonical form in each case).

QUILL Research Centre, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, UK. E-mail: j.holbrey@qub.ac.uk † First presented as poster 323 at the 3rd Congress on Ionic Liquids, Cairns, Australia, May 31–June 4, 2009.

‡ Current address: Center for Green Manufacturing, Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.

These systems have either six (guanidinium) or five (uronium, thiouronium) sites which can be used for structural modification, providing a large range of variables with which to change the properties of the salts.

A number of examples of ionic liquids with guanidinium cations have been reported,⁵ and have been studied as solvents for synthesis and catalysis,⁶ as absorbents for gases,⁷ and as dye-sensitized solar cell electrolytes.⁸ The high nitrogen content of guanidinium cations leads to high energy density yet remarkable thermal and chemical stability providing interest as potential high-energy materials.⁹

The analogous uronium and thiouronium salts are well known and are used as peptide-coupling agents, intermediates in thiol and guanidine syntheses, metal-complexation, electroplating bath additives, stabilisers for vulcanised rubber, and in metal extraction and fixing (for example in photography). The salts can be conveniently synthesised by alkylation of ureas and thioureas under neutral or acidic conditions. It is worth noting that thiouronium salts readily undergo hydrolysis or aminolysis to ureas and guanidines, respectively, under basic conditions, with liberation of thiols. ¹⁰

The tendency for *S*-methyl-*N*,*N*'-alkylthiouronium methyl-sulfate salts to form liquids rather than crystalline solids was first reported, in passing, in 1951,¹¹ however, only much more recently have a small number of ionic liquid thiouronium salts have been reported in the patent literature.^{12,13} Bond and co-workers¹⁴ have also recently synthesised and electrochemically characterised ten cyclic, aromatic *S*-alkyl thiolonium, thiotetrazolium, and thiobenzolium based ionic liquids prepared by alkylation of aromatic, cyclic thiones followed by protonation of the thioether functionalised heterocycle.

However, there is limited experimental data on the synthesis and physical properties of the acyclic sulfur-containing thiouronium-based ionic liquids. Here we describe the synthesis, characterisation, and measurement of physical, rheological, and electrochemical properties of thiouronium ionic liquids synthesised from four commercially available thioureas: thiourea, 1,3-dimethylthiourea, 1,3-diethylthiourea, and 1,3-tetramethylthiourea (Fig. 2). The ionic liquids, and starting

thiourea (TU)

H₃C
$$\stackrel{\searrow}{N}$$
 CH₃ $\stackrel{(i)}{N}$ CH₃ $\stackrel{(i)}{C_n}$ C₂H₅ $\stackrel{(i)}{N}$ C₂H₅ $\stackrel{\searrow}{N}$ C₂H₅ $\stackrel{\searrow}{N}$ C₂H₅ $\stackrel{\searrow}{N}$ CH₃ $\stackrel{(i)}{N}$ CH₃ \stackrel

Fig. 2 General synthesis and structures of the thiouronium cations (1-17) prepared from the four initial thioureas, thiourea, 1,3-dimethylthiourea, 1,3-diethylthiourea and 1,3-tetramethylthiourea, by alkylation with either dimethylsulfate (1), diethylsulfate (2, 3, 5) or bromoalkanes (2-17) followed by anion exchange with $\text{Li}[\text{NTf}_2]$ in water.

materials, were chosen in order to examine the effects of the three structural variables, namely S-alkyl and N-alkyl substitution and anion, on the ionic liquid characteristics of a matrix of substituted thiouronium salts with hydrogen-, methyl-, and ethyl-substituents on the nitrogen positions and methyl, ethyl, butyl, hexyl and octyl groups on the sulfur of the cation (Table 1). Preliminary measurements of the mutual miscibility limits with octane, dodecane and toluene and the extraction of dibenzothiophene from dodecane with promising ionic liquids from within the matrix are also presented.

Results and discussion

Alkylated thiouronium salts (Table 1) were prepared with seventeen S-alkylthiouronium cations as either methylsulfate, ethylsulfate, bromide or bis{(trifluoromethane)sulfonyl}imide salts, by alkylation of thiourea, 1,3-dimethylthiourea, 1,3-diethylthiourea and 1,3-tetramethylthiourea with diethylsulfate or dimethylsulfate and/or bromoethane, bromobutane, bromohexane and bromooctane, followed by anion metathesis with Li[NTf₂] following the general scheme indicated in Fig. 2. The

Table 1 Experimental characterisation of the ionic liquids prepared. Glass transition temperatures and melting points were determined by DSC and decomposition temperatures by dynamic DSC under dinitrogen

	S-R	N-R′	<i>N</i> -R"	Anion	State (at rt)	$T_{ m mp}{}^a/{}^{\circ}{ m C}$	$T_{ m g}/^{\circ}{ m C}$	$T_{ m dec}/^{\circ}{ m C}$	Potential window/V	Cathodic $limit^b/V$	Anodic limit ^b /V
1	CH ₃	Н	Н	[MeSO ₄]	Solid	36	-61	200	4.0	-1.5	2.5
2	C_2H_5	Н	Н	Br	Solid	87	n/o^c	202	1.5	-1.5	0.0
		Н	Н	[EtSO ₄]	Solid	$\sim 0-25^d$	-56.2	183			
				$[NTf_2]$	Liquid	27	-69	258	4.0	-1.5	2.5
3		CH_3	H	Br	Solid	62	-42	166	1.3	-1.3	0.0
				[EtSO ₄]	Solid	32	-65	~175	3.8	-1.5	2.3
				$[NTf_2]$	Liquid	19	-74^{e}	245	4.0	-1.5	2.5
4		CH_3	CH_3	Br	Solid	92	-25_{c}	131	-2.0	-2.0	0.0
				$[NTf_2]$	Liquid	_	-85^{f}	307	4.3	-2.0	2.3
5		C_2H_5	Н	Br	Liquid	40	-49	150	1.5	-1.5	0.0
				[EtSO ₄]	Liquid	_	-76.2	186	3.5	-1.5	2.0
				$[NTf_2]$	Liquid	_	-87	257	4.0	-2.5	1.5
6	C_4H_9	Н	H	Br	Solid	83	-30	195	1.7	-1.5	0.2
_				$[NTf_2]$	Solid	49	-60	257	4.0	-1.5	2.5
7		CH_3	H	Br	Solid	60	-29	161	1.5	1.5	0.0
_				$[NTf_2]$	Liquid	_	-72	209	4.0	-1.5	2.5
8		CH_3	CH_3	Br	Solid	82	n/o ^c	121			
_		C_2H_5	Н	$[NTf_2]$	Liquid	_	-83	287	4.3	-2.0	2.3
9				Br	Liquid	_	-47	150			
	~			$[NTf_2]$	Liquid	_	-81	175	4.1	-1.5	2.6
10	C_6H_{13}	H	Н	Br	Solid	86	-30	196			
				$[NTf_2]$	Liquid	_	-66	240	3.9	-1.4	2.5
11		CH_3	Н	Br	Solid	95	-41	157			
		~	~~~	$[NTf_2]$	Liquid		-77	256	4.0	-1.5	2.5
12		CH ₃	CH ₃	Br	Solid	73	n/o ^c	121			
				$[NTf_2]$	Liquid		-87	314	4.3	-2.0	2.3
13		C_2H_5	H	Br	Liquid	49	-45	154	4.0		2.5
	~ **			$[NTf_2]$	Liquid		-84	239	4.0	-1.5	2.5
14	C_8H_{17}	Н	Н	Br	Solid	96	-35	204	1.5	-1.5	0.0
		~		$[NTf_2]$	Liquid	_	-65	258	3.9	-1.4	2.5
15		CH_3	H	Br	Solid	54	-44	159	4.0		2.5
1.		CII	CII	$[NTf_2]$	Liquid		-77	231	4.0	-1.5	2.5
16		CH_3	CH_3	Br	Solid	79 ^g	n/o ^c	115		2.0	2.5
		G 11	**	$[NTf_2]$	Liquid	_	-87	311	4.5	-2.0	2.5
17		C_2H_5	H	Br	Liquid	_	-56	150			2.6
				$[NTf_2]$	Liquid	_	-81	175	4.1	-1.5	2.6

 $[^]a$ mp and $T_{\rm g}$ recorded by DSC on heating, $T_{\rm dec}$ measured to the onset to 5 wt% decomposition by TGA; viscosities and densities at 25 °C except where noted. b Relative to Ag/Ag $^+$. c n/o indicates transition was not observed by DSC. d A reliable melting point could not be obtained visually, no crystallisation and melting was determined by DSC. e lit. -68 °C from ref. 12. f lit. -81 °C from ref. 12. g Crystal–crystal transition at -11 °C.

matrix of cations was prepared in order to systematically investigate the effects of S-alkyl and N-alkyl/hydrogen substitution on the ionic liquid-forming properties of the salts.

All new ionic liquids gave satisfactory microanalysis and had IR, NMR, and mass spectra consistent with the proposed structures. Phase transitions for all the salts were characterised by DSC and TGA, and are detailed in Table 1.

Melting and glass transition temperature

The four salts prepared with alkylsulfate anions all have relatively low melting points; **1**-MeSO₄ and **3**-EtSO₄ are hygroscopic crystalline solids at room temperature with melting points between 27–36 °C (Table 1). **2**-EtSO₄ crystallised slowly at 0 °C on seeding with crystals obtained by cooling a small sample to –15 °C and melted between 0–25 °C, **5**-EtSO₄ did not show any tendency to crystallise, either on standing in a freezer, or during the thermal cycles of the DSC measurements and only a glass transition was observed.

In general, ionic liquids with methyl- and ethylsulfate anions tend to have low melting points, ¹⁵ even with small, rigid cations such as 1,3-dimethylimidazolium methylsulfate (mp 43 °C). The melting points of the thiouronium salts here are largely comparable to those of the imidazolium systems. **1-MeSO**₄ has an even smaller rigid cation than that of 1,3-diethylimidazolium, with five non-hydrogen atoms and only a single methyl substituent and melts at 36 °C.

The bromide salts were isolated initially as liquids, all of which crystallised slowly on standing at room temperature as solids with the melting points between 40–100 °C except for **9-Br** (S-ethyl-N,N'-diethylthiouronium) and **17-Br** (S-octyl-N,N'-diethylthiouronium) which remained as viscous oils. All the bromide-containing ionic liquids formed glasses on cooling directly from the molten state, with glass transition temperatures between -25 to -56 °C except for longer-chain S-alkyl-N,N'-tetramethylthiouronium bromides (8-Br, 12-Br and 16-Br) and S-ethylthiouronium bromide (2-Br) which crystallised directly on cooling rather than forming a glass. For all the glass forming salts, cold crystallisation followed by melting transitions was observed during the DSC cycles. Melting points and glass transition temperatures for the bromide salts from Table 1 are plotted in Fig. 3 as a function of S-alkyl chain length.

The salts derived from both thiourea and tetramethylthiourea have melting points approximately 50 °C higher than those from dimethyl- and diethylthiourea with a single substituent on each nitrogen atom. This is presumably a result of the lower symmetries of the N,N'-dialkylthiouronium cations rather than any hydrogen-bonding effects. Little variation was observed in the melting points of the salts with increasing the size of the S-alkyl substituent. This contrasts markedly with the reduction in, and suppression of, melting points with increasing substituent chain length commonly observed for other ionic liquids. ¹⁶

Metathesis to the $[NTf_2]^-$ salts resulted in a wide family of low melting ionic liquids, as anticipated. Only one of the bis{(trifluoromethyl)sulfonyl}imide salts (6-NTf₂) spontaneously crystallised at room temperature (mp 47 °C). **2**-NTf₂ and **3**-NTf₂ displayed sub-ambient crystallisation and subsequent

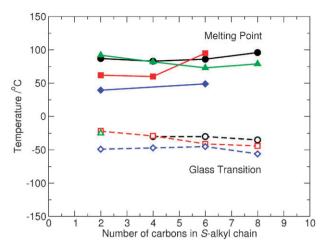


Fig. 3 Variation in the melting points and glass transition temperatures. S-alkyl-thiouronium (circle), S-alkyl-N, N'-dimethylthiouronium (square), S-alkyl-N, N'-diethylthiouronium (diamond), and S-alkyl-N, N'-tetramethylthiouronium (triangle) bromide salts synthesised as a function of the number of carbons in the S-alkyl substituent. Connecting lines (solid for melting points and dashed for glass transitions) are added as a visual aid.

melting points in the DSC experiments at 27 °C and 19 °C respectively. All the remaining bis{(trifluoromethyl)sulfonyl}-imide ionic liquids investigated were glass-forming liquids and could not be induced to crystallise, either by cooling to -15 °C for long periods, or in the DSC cooling cycles where only glass transitions were observed. Melting points and glass transition temperatures are plotted as a function of *S*-alkyl chain length in Fig. 4. In comparison to the corresponding bromide salts, the suppression of crystallisation is marked and the glass transition temperatures are also significantly lowered, ranging from -60 to -95 °C.

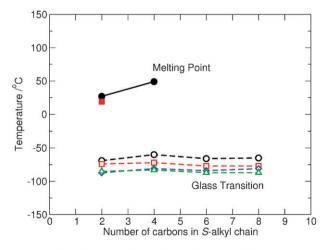
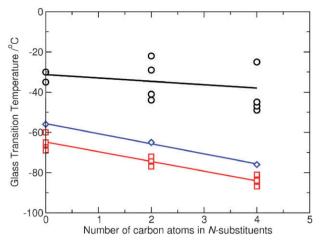



Fig. 4 Variation in the melting points and glass transition temperatures. S-alkyl-thiouronium (circle), S-alkyl-N, N'-dimethylthiouronium (square), S-alkyl-N, N'-diethylthiouronium (diamond), and S-alkyl-N, N'-tetramethylthiouronium (triangle) bis{(trifluoromethyl)sulfonyl}imide salts synthesised as a function of the number of carbons in the S-alkyl substituent. Connecting lines (solid for melting points and dashed for glass transitions) are added as a visual aid; only glass transitions were observed for most of the ionic liquids.

Fig. 5 Variation in glass transition temperature with the size of the N-alkyl substituents on the thiouronium salts grouped by anion type; Br $^-$ (circle), [EtSO₄] $^-$ (diamond), and [NTf₂] $^-$ (square). For the [NTf₂] $^-$ and [EtSO₄] $^-$ salts, each carbon atom added to the N-substituent of the cation reduced T_g by ca. 5 °C.

Comparing the glass transition temperatures a small, but distinct step-wise reduction in the glass transition temperatures is apparent on changing the *N*-substitution in the thiouronium cations from –NH to –NH(CH₃) to –NH(C₂H₅) for the ionic liquids with ethylsulfate, bromide or bis{(trifluoromethyl)-sulfonyl}imide anions (Fig. 5). This is most clearly defined for the ethylsulfate and bis{(trifluoromethyl)sulfonyl}imide systems, where adding a CH₂ moiety to each *N*-site in the cation results in a reduction of the glass transition temperature of 5 °C. The comparable trend is less clearly defined for the bromide salts, with an increased spread in the observable glass transition temperatures and with a number of the salts crystallising directly on cooling rather than forming supercooled glasses.

Thermal stability

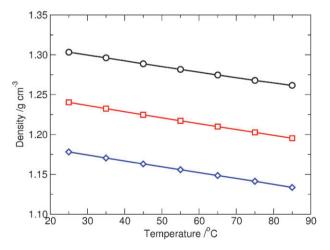
Decomposition temperatures were investigated by dynamic TGA, scanning at 5 °C min⁻¹ under nitrogen. The results, reported in Table 1, were determined from the onset to the initial 5% mass loss. All of the ionic liquids showed moderate thermal stability to at least 150 °C. The decomposition temperatures ($T_{\rm dec}$) of the thiouronium ionic liquids increase with decreasing nucleophilicity of the anions present, roughly following the order Br⁻ < [RSO₄]⁻ < [NTf₂]⁻, with mean onset of decomposition temperatures of 160 °C, 186 °C and 251 °C, respectively, for the three anion types. However, in general, the thiouronium salts showed poorer thermal stability compared to the corresponding simple alkylguanidinium ionic liquids.¹⁷ This is probably associated with nuculeophilic based induced decomposition at the mercaptoether group of the cation.

Density and viscosity

Densities and viscosities were measured between 20–90 °C in the liquid regions for the ionic liquids with [NTf₂]⁻ and [RSO₄]⁻ anions and are shown in Tables 2 and 3 respectively. For all the ionic liquids investigated, the densities ranged between 1.20–1.50 g cm⁻³ at 25 °C and decreased linearly with increasing temperature. This is illustrated in Fig. 6 for the three ethylsulfate salts 2-EtSO₄, 3-EtSO₄ and 5-EtSO₄ showing the systematic decrease in density as the number of methylene groups in the cation increases on substituting the thiouronium cations with *N*-methyl and *N*-ethyl groups.

The changes in densities of the different ionic liquids correlate directly with the group contribution descriptor models for thermophysical properties. ¹⁸ The coefficients of thermal expansion (α) are in the range -7 to -10×10^{-4} K ⁻¹, typical for both ionic liquids ¹⁹ and molecular organic solvents. For each cation, the ionic liquids with [NTf₂] anions had higher densities than the corresponding alkylsulfate salts.

Table 2 Densities (g cm⁻³) of ionic liquids 2-EtSO₄, 3-EtSO₄, 3-NTf₂, 4-NTf₂, 5-EtSO₄, 5-NTf₂, 6-NTf₂, 7-NTf₂, 8-NTf₂, 9-NTf₂, 10-NTf₂, 11-NTf₂, 12-NTf₂, 13-NTf₂, 15-NTf₂, and 17-NTf₂ as a function of temperature


<i>T</i> /°C	2 -EtSO ₄	3-EtSO ₄	3- NTf ₂	4- NTf ₂	5-EtSO ₄	5 -NTf ₂	$6-NTf_2$	7- NTf ₂
25	1.3033	1.2403	1.5085	1.4501	1.1782	1.4289		1.4293
35	1.2962	1.2325	1.4981	1.4404	1.1706	1.4189		1.4194
45	1.2888	1.2247	1.4876	1.4306	1.1631	1.4088		1.4094
55	1.2817	1.2172	1.4774	1.4212	1.1558	1.3990	1.4770	1.3997
65	1.2747	1.2099	1.4674	1.4119	1.1485	1.3894	1.4674	1.3901
75	1.2679	1.2027			1.1413		1.4580	1.3786
85	1.2616	1.2000			1.1336		1.4484	1.3611
α^a	-6.999	-7.468	-10.29	-9.56	-7.323	-9.89	-9.520	-9.810
R^2	0.9997398	0.9998574	0.9999	0.9999	0.9999631	0.9999	0.9999912	0.9999652
T range for fit	25–85	25–85	25–65	25–65	25–85	25–65	55–85	25–65
T/°C	8-NTf ₂	9-NTf ₂	10- NTf ₂	11- NTf ₂	12- NTf ₂	13 -NTf ₂	15 -NTf ₂	17- NTf ₂
25	1.3896	1.3527	1.4245	1.3739	1.3384	1.3207	1.3145	1.2478
35	1.3804	1.3432	1.4145	1.3643	1.3294	1.3112	1.3052	1.2386
		1.3432 1.3336	1.4145 1.4041	1.3643 1.3546	1.3294 1.3204	1.3112 1.3002	1.3052 1.2959	1.2386 1.2296
35	1.3804							
35 45	1.3804 1.3710	1.3336	1.4041	1.3546	1.3204	1.3002	1.2959	1.2296
35 45 55	1.3804 1.3710 1.3619	1.3336 1.3241	1.4041 1.3938	1.3546 1.3451	1.3204 1.3117	1.3002 1.2825	1.2959 1.2869	1.2296 1.2208
35 45 55 65 75 85	1.3804 1.3710 1.3619 1.3530	1.3336 1.3241 1.3068	1.4041 1.3938	1.3546 1.3451	1.3204 1.3117	1.3002 1.2825	1.2959 1.2869 1.2778	1.2296 1.2208 1.2137
35 45 55 65 75 85 α^a	1.3804 1.3710 1.3619 1.3530	1.3336 1.3241 1.3068 1.2868	1.4041 1.3938	1.3546 1.3451	1.3204 1.3117	1.3002 1.2825	1.2959 1.2869 1.2778 1.2686	1.2296 1.2208 1.2137 1.2053
35 45 55 65 75 85	1.3804 1.3710 1.3619 1.3530 1.3440	1.3336 1.3241 1.3068 1.2868 1.2555	1.4041 1.3938 1.3825	1.3546 1.3451 1.3353	1.3204 1.3117 1.3030	1.3002 1.2825 1.2653	1.2959 1.2869 1.2778 1.2686 1.2509	1.2296 1.2208 1.2137 1.2053 1.1957

^a Coefficient of thermal expansion ($\times 10^{-4} \text{ K}^{-1}$), where R^2 is the goodness of fit to the linear regression over the temperature range 25–85 °C.

Table 3 Viscosity (cP) for the ionic liquids 2-EtSO₄, 3-EtSO₄, 5-EtSO₄, 5-NTf₂, 6-NTf₂, 7-NTf₂, 8-NTf₂, 9-NTf₂, 11-NTf₂, 12-NTf₂, 14-NTf₂, 15-NTf₂, 16-NTf₂, and 17-NTf₂ as a function of temperature in their respective liquid regions within the temperature range 20–90 °C

$T/^{\circ}\mathrm{C}$	2 -EtSO ₄	3-EtSO ₄	5-EtSO ₄	5- NTf ₂	$6-NTf_2$	7- NTf ₂	8- NTf ₂	9- NTf ₂
20						143		116
25 30	2287	336	199	59		85	32	72
35	1095	167	118	40			23	
40 45	569	96	73	27		53	17	48
50				_,	98	35		34
55 60	312	58	50		63	25	12	25
65	187	38	36			23	9.0	23
70 75	120	26	26		43		6.9	
80		20	20		30		0.5	
85 90	82				22			
T range for fit/°C $\ln(A'/\text{cP})^a$ B''^a/K $T_0''^a/K$ R^2	25-85 -0.0728 641.32 216.95 0.9973	25–75 -1.318 643.65 208.15 0.9996	25–75 -0.8246 620.50 196.95 0.9997	25–45 -1.1555 587.29 186.15 0.9956	50–90 -0.9884 614.22 213.15 0.9997	20-60 -0.8462 537.04 201.15 0.9987	26–75 –1.496 546.74 190.15 0.9973	20-60 -0.6056 541.75 192.15 0.9999
$T/^{\circ}$ C	10-NTf ₂	11-NTf ₂	12 -NTf ₂	14 -NTf ₂	15 -NTf ₂	16 -NTf ₂	17 -NTf ₂	
20				561	171		274	
25 30		30	19 16	299	103	23	165	
35 40		21	19 11	170	64	17	102	
45		14	11	170	04	12	102	
50 55	59			104	42	8.5	65	
60				66	30		44	
65 70	38	6.7		46	21	6.4	31	
75	27	5.2	4.2			4.9		
80 85				34			24	
T range for fit/°C $\ln(A'/\text{cP})^a$ B'^a/K T_0^a/K R^2	55–75 -1.3385 654.37 207.15 0.9996	25–75 -2.0391 561.83 196.15 0.9935	25–75 -2.027 561.83 186.15 0.9995	26 20–90 -0.5232 588.52 208.15 0.9985	20-70 -0.9588 595.49 196.15 0.9983	25–75 -1.9808 582.87 186.15 0.9932	20-80 -0.9945 673.51 192.15 0.9980	

^a Parameters from fitting the viscosity data to the VFT equation $(\eta = A' \exp(B'/T - T_0))$ where R^2 is the goodness of fit.

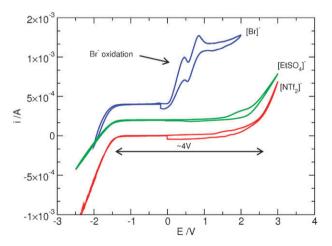
Fig. 6 Change in density for the three S-ethylthiouronium ethylsulfate ionic liquids **2**-EtSO₄ (circle), **3**-EtSO₄ (square), and **5**-EtSO₄ (diamond) with temperature, showing the linear decrease in density with increasing temperature and with increasing the number of methylene substituents on each thiouronium nitrogen from 0 for **2**-EtSO₄ to 2 for **5**-EtSO₄.

Viscosity measurements were made between room temperature, or the melting point of the ionic liquid, and 90 °C using a cone and plate viscometer. In all cases, the viscosity decreased with temperature and showed a good fit to the VFT equation²⁰ characteristic of ionic liquids.²¹ The corresponding data are summarised in Table 3 as a function of temperature.

The ionic liquids with [NTf₂]⁻ anions and the shortest alkyl substituents on the cation S-position display the lowest viscosities. For those ionic liquids derived from 1,3-tetramethylthiourea (8-, 12-, and 16-NTf₂), the viscosities are comparable or lower than those for 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide.²² It is notable, however, that the introduction of even one alkyl substituent on the cation N-positions provides sufficient disruption of the hydrogenbond donating ability of the cations to reduce the ionic liquid viscosities significantly, providing potentially useful materials of moderate fluidity. For example the presence of a methyl or ethyl group in 3-EtSO₄ and 5-EtSO₄ compared to 2-EtSO₄ reduces the viscosity by approximately an order of magnitude, from ~ 2000 cP at 25 °C for 2-EtSO₄ to ~ 200 cP for 5-EtSO₄.

This provides access to a wider array of ionic liquids with moderately high fluidity, derived from the dimethyl- and diethylthiourea starting materials in addition to those from tetramethylthiourea.

Electrochemical window


The electrochemical windows of all the ionic liquids were measured by cyclic voltammetry at 25 °C, the data are shown in Table 1. The cathodic reduction limit of the thiouronium cations occurs at -2.0 V for the pentaalkylated S-alkyl-N.N'tetramethylthiouronium salts and at -1.5 V for those containing one or more hydrogens on the N-positions; provides electrochemical windows of up to $\sim 4.5 \text{ V}$ depending on the anodic oxidation potential defined by the anion present. Typical cyclic voltammograms, for the ionic liquids 5-Br, 5-EtSO₄ and 5-NTf₂, are presented in Fig. 7 and show the common reductive limit of -1.5 V vs. Ag/Ag⁺ for the S-ethyl-N,N'diethylthiouronium cation in each case and oxidative limits of 0.0 V (Br⁻), 2.0 V ([EtSO₄]⁻), and 2.5 V ([NTf₂]⁻). Thiouronium cations are electrochemically less stable than imidazolium cations²³ and the cathodic limit is thus reduced from -2.5 to -1.5 V. When the cation is fully alkylated, the cathodic window extends to -2 V. The anodic limit is almost unaffected and is consistent with that of [emim][NTf₂].²⁴

The relatively low viscosities of these thiouronium ionic liquids and the relatively good reductive stability of the cation may provide a new class of ionic liquid electrolytes for photovoltaic applications.

Miscibility with aliphatic and aromatic hydrocarbons

Binary phase compositions of 3-NTf₂ and 5-NTf₂ with octane, dodecane, and toluene were measured over the temperature range 25–85 °C using ¹H NMR spectroscopy to probe the miscibility and mutual solubility of each of the two components of the binary mixtures.

The data (Fig. 8) show high solubility of toluene in both ionic liquids, with the mutual miscibility limit forming at 73.9–75.0 mol% toluene in 3-NTf₂ and at 76.5–78.3 mol%

Fig. 7 Typical cyclic voltammograms of *S*-ethyl-N,N'-diethylthiouronium bromide, ethylsulfate and bis{(trifluoromethyl)sulfonyl}imide, all the ionic liquids showed a reduction limit of ca. -1.5 V (vs. Ag/Ag $^+$). The three data sets of vertically offset to aid visualisation.

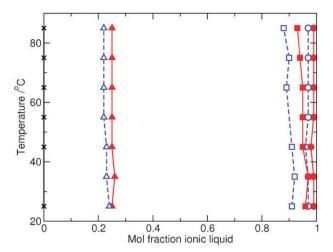


Fig. 8 Mutual miscibility limits as a function of temperature for 3-NTf_2 (solid lines) and 5-NTf_2 (dashed lines) with octane (square), dodecane (circle) and toluene (triangle). No ionic liquids were detected in the hydrocarbon phases (crosses) in any of the systems.

in 5-NTf₂. These results are comparable with the saturation composition of toluene/1-butyl-3-methylimidazolium bis{(tri-fluoromethyl)sulfonyl}imide mixtures which show a maximum at 1:2.8 ionic liquid:toluene (*ca.* 74 mol% toluene).²⁵

The solubility of toluene in imidazolium-based ionic liquids increases dramatically with increasing the total alkyl-chain component of the cation and for 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, total miscibility with toluene is observed. In contrast, the two thiouronium systems described here have, respectively, four and six carbon atoms in the total alkyl-substituents, yet show almost identical mutual miscibility profiles.

The solubility of octane and dodecane in the ionic liquids examined was much lower than that of toluene, as anticipated. The mutual miscibility limits of octane and dodecane with 3-NTf₂ varied from 3.0-6.9 mol% and 1.2-1.5 mol%, respectively, and from 6.4-11.9 mol% and 2.6-4.3 mol%, respectively, with 5-NTf₂. In common with other ionic liquid systems reported, ²⁶ octane showed higher miscibility with the ionic liquids than the longer chain dodecane, and on changing from *N*-methyl to *N*-ethyl substitution on the ionic liquid, the solubility of both alkanes increases. No ionic liquids were detected in the upper hydrocarbon phases during the measurements.

The vast differences in the solubilities of the aliphatic and aromatic hydrocarbons and the variation in relative miscibilities of aromatics and aliphatic hydrocarbons in the two different thiouronium-based ionic liquids studied could indicate the formation of specific, selective interactions with aromatics²⁷ that could lead to potential use in aliphatic/aromatic separation as has been studied using other types of ionic liquids.^{28–31}

Polyaromatic sulfur extraction

We have previously demonstrated how increasing the size of the cations from pyridinium or imidazolium through picolinium to lutidinium and isoquinolinium in ionic liquids can enhance the extraction of polyaromatic sulfur compounds such as dibenzothiophene (DBT) from aliphatic hydrocarbons as a model desulfurisation process.³² Extraction data were modelled using a QSPR approach with descriptors that indicated the importance of cation aromaticity and planarity in enhancing extraction. Thiouronium-based ionic liquids, which contain a flat, charge delocalised, yet non-aromatic cation, are not encompassed within the descriptor set used, so we were interested to compare how the ionic liquids described here performed as solvents for desulfurisation.

Three ionic liquids (6-NTf₂, 7-NTf₂, and 9-NTf₂) with $-NH_2$, $-NH(CH_3)$, and $-NH(C_2H_5)$ groups were tested for the extraction of DBT from dodecane as a model system using the procedures previously described.³² The S-alkyl group was butyl in all three ionic liquids to remain comparable with the previous studies. DBT was extracted by all three ionic liquids, with 6-NTf₂ removing 41.3% (std. dev. 0.7), whereas on adding an alkyl substituent to the nitrogens resulted in improved extraction, with 7-NTf₂ removing 68.0% (std. dev. 0.3) and 9-NTf₂ removing 64.1% (std. dev. 0.2) of the DBT present. When compared to the ionic liquids containing aromatic cations previously studied, the thiouroniums display extraction coefficients of comparable values. Most notably, 9-[NTf₂] which is derived from diethylthiourea combines many good physical and rheological properties, simple preparation of the cations, and good extraction characteristics.

Conclusions

A range of S-alkylthiouronium ionic liquids accessible from relatively low cost readily available thioureas have been prepared and characterised. All the salts synthesised exhibited low melting points. All the bromides melted below 100 °C. Melting points and glass transition temperatures all show a general reduction on N-alkyl substitution, compared to the protonated thiouronium salts, and significantly lower melting points for bis{(trifluoromethyl)sulfonyl}imide anions compared to bromide. Monoalkylation of the N-sites of the cation reduces both melting and glass transition temperatures relative to the pentaalkyl analogues, although at a cost of a lower decomposition temperature, slightly reduced electrochemical window and an increase in viscosity. The physical properties (mp, $T_{\rm g}$, $T_{\rm dec}$, viscosity) and electrochemical windows are reasonable for many applications provided that basic conditions, under which thiouronium salts undergo hydrolysis, are avoided.

Experimental

Materials

Thioureas (thiourea, 1,3-dimethylthiourea, 1,3-diethylthiourea, and 1,3-tetramethylthiourea) and the alkylating agents (diethylsulfate, bromoethane, bromohexane, and bromooctane) were purchased from Aldrich and used as received, lithium bis{(trifluoromethyl)sulfonyl}imide was purchased from 3M. Initial alkylation of the thioureas either in toluene (dialkylsulfate) or ethanolic (bromoalkane) solution yielded thiouronium alkylsulfate and bromide salts in good yields. Anion metathesis of the water soluble alkylsulfate or bromide salts in water with lithium bis{(trifluoromethyl)sulfonyl}imide (Li[NTf₂]) gave the hydrophobic [NTf₂]⁻ ionic liquids.

Synthesis

S-Methylthiouronium methylsulfate (1-MeSO₄). Dimethylsulfate (16.2 g, 0.129 mol) was added dropwise to a slurry of thiourea (7.7 g, 0.129 mol) in toluene (50 cm³) at 60 °C with the rate of addition controlled to maintain the reaction temperature at 60 ± 5 °C. After addition, the reaction mixture was stirred for 1 h, then allowed to cool to room temperature to give a biphasic mixture. The upper toluene layer was decanted off. The lower ionic liquid phase was washed with hexane $(2 \times 50 \text{ cm}^3)$ and the remaining solvent was removed under reduced pressure at 60 °C to give a colourless liquid that solidified on standing at -15 °C: mp 36 °C (Found: C, 17.23; H, 5.37; N, 13.66; S, 31.57%. [C₂H₇N₂S][CH₃SO₄] (mol. wt. 202.2) requires C, 17.82; H, 4.98; N, 13.85; S, 31.70%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.93 (br s, 4H, 2 × N H_2), 3.40 (3H, s, O-C H_3), 2.55 (3H, s, S-C H_3); δ_C (125 MHz, DMSO- d_6) 171.6 (SCN₂), 53.8 (O-CH₃), 13.6 (S-CH₃).

S-Ethylthiouronium bromide (2-Br). Thiourea (4.09 g, 0.054 mol) was dissolved in ethanol with warming and bromoethane (6.15 g, 0.056 mol, 1.05 eq.) was added and the homogeneous solution heated at reflux overnight. Ethanol and unreacted bromoethane were removed under reduced pressure at 60 °C and the product was then dried *in vacuo* to yield **2**-Br as a clear, colourless oil that crystallised on cooling to room temperature as a colourless solid, mp 87 °C (Found: C, 19.67; H, 4.64; N, 15.4; S, 17.3; Br, 42.46%. [C₃H₉N₂S]Br (mol. wt. 185.09) requires C, 19.47; H, 4.90; N, 15.14; S, 17.32; Br, 43.17%); $\delta_{\rm H}$ (500 MHz, DMSO- $d_{\rm 6}$) 8.99 (4H, s), 3.15 (2H, q), 1.26 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- $d_{\rm 6}$) 169.6 (SCN₂), 24.6, 14.0 (terminal CH₃); ESI-MS (CH₃CN/H₂O) +ve mode: 105.0 (100%, [C₃H₉N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Ethylthiouronium ethylsulfate (2-EtSO₄). 2-EtSO₄ was prepared using the same procedure as 1-MeSO₄ from thiourea (15.8 g, 0.208 mol) and diethylsulfate (33.0 g, 1.05 eq.) in toluene (150 cm³) as a colourless liquid after decanting the upper toluene phase, washing with hexane $(2\times)$ and drying under reduced pressure at 60 °C and finally in vacuo. A small sample was cooled to −15 °C overnight, yielding colourless crystals which were used to seed the bulk liquid, which then slowly crystallised as a hygroscopic colourless crystalline mass at 0 °C and melted on standing at room temperature. (Found: C, 23.75; H, 5.70; N, 11.95; S, 28.19%. [C₃H₉N₂S][C₂H₅SO₄] (mol. wt. 230.3) requires C, 26.08; H, 6.13; N, 12.16; S, 27.84%); $\delta_{\rm H}$ (500 MHz, DMSO- $d_{\rm 6}$) 9.02, 8.94 (4H, br d, $J_{NH}^1 = 38.5 \text{ Hz}, 2 \times NH_2, 3.77 (2H, q, O-CH_2CH_3), 3.14$ (2H, q, S-CH₂CH₃), 1.25 (3H, t, O-CH₂CH₃), 1.11 (3H, t, S-CH₂CH₃); δ_C (125 MHz, DMSO- d_6) 170.2 (SCN₂), 62.0 (O-CH₂CH₃), 25.0 (S-CH₂CH₃), 15.4 (O-CH₂CH₃), 14.4 (S-CH₂CH₃); ESI-MS (CH₃CN/H₂O) + ve mode: 105.0 $(100\%, [C_3H_9N_2S]^+).$

S-Ethylthiouronium bis{(trifluoromethyl)sulfonyl}imide (2-NTf₂). The metathesis of **2**-Br (4.80 g, 0.026 mol) in water with Li[NTf₂] (7.44 g, 0.026 mol) in water resulted in the separation of **2**-NTf₂ as a colourless liquid, which was washed with water and dried *in vacuo*, mp 27 $^{\circ}$ C (Found: C, 15.63; H, 2.41; N, 11.11; S,

25.15%. [C₃H₉N₂S][N(SO₂CF₆)₂] (mol. wt. 385.33) requires C, 15.59; H, 2.35; N, 10.91; S, 24.96%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.93 (4H, s), 3.13 (2H, q), 1.26 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 169.7 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 24.7, 13.9 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 105.0 (100%, [C₃H₉N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Ethyl-*N*,*N'*-dimethylthiouronium bromide (3-Br). 3-Br was prepared using the same procedure as **2**-Br from 1,3-dimethylthiourea (4.89 g, 0.047 mol) and bromoethane (5.37 g, 0.049 mol, 1.05 eq.) heated at reflux overnight. After removal of solvent and excess bromoethane, the product was dried *in vacuo* to yield **3**-Br as a colourless crystalline solid, mp 62 °C (Found: C, 28.20; H, 5.93; N, 14.01; S, 15.01; Br, 36.63%. [C₅H₁₃N₂S]Br (mol. wt. 213.14) requires C, 28.18; H, 6.15; N, 13.14; S, 15.04; Br, 37.49%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 9.03 (2H, s), 3.24 (2H, q), 2.95 (6H, d), 1.28 (3H, t) $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 166.5 (SCN₂), 30.7 (N-C), 25.2, 13.7 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 133.1 (100%, [C₅H₁₃N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Ethyl-N,N'-dimethylthiouronium ethylsulfate (3-EtSO₄). 3-EtSO₄ was prepared using the same procedure as 1-MeSO₄ from 1,3-dimethylthiourea (15.8 g, 0.208 mol) and diethylsulfate (33.0 g, 1.05 eq.) in toluene (100 cm³), heating overnight at 60 °C. A homogeneous solution in toluene was obtained in contrast to 2-EtSO₄. The solvents were removed under reduced pressure at 60 °C to give a colourless liquid which slowly crystallised on storing at -15 °C: mp ≈ 32 °C (Found: C, 32.06; H, 7.65; N, 10.44; S, 24.80%. [C₅H₁₃N₂S][C₂H₅SO₄] (mol. wt. 258.4) requires C, 32.54; H, 7.02; N, 10.84; S. 24.82%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.95 (2H, b, 2 × NH), 3.75 (q, 2H, O-C H_2 -C H_3), 3.20 (q, 2H, S-C H_2 -C H_3), 2.94 $(6H, d, J^2_{NH} = 17.4 \text{ Hz}, 2 \times \text{N-C}H_3), 1.29 (3H, t, OCH_2-CH_3),$ 1.11 (3H, t, SCH₂-CH₃); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 167.1 (SCN₂), 61.6 (O-CH₂), 31.1 (N-CH₃), 31.0 (N-CH₃), 25.4 (S-CH₂), 15.5 (OCH₂-CH₃), 14.2 (SCH₂-CH₃).

S-Ethyl-*N*,*N'*-dimethylthiouronium bis{(trifluoromethyl)-sulfonyl}imide (3-NTf₂). The metathesis of 3-Br (4.83 g, 0.023 mol) in water with Li[NTf₂] (6.5 g, 0.023 mol) in water resulted in the separation of 3-NTf₂ as a colourless liquid, which was washed with water and dried *in vacuo*, mp 19 °C (Found: C, 20.41; H, 2.85; N, 10.55; S, 23.48%. [C₅H₁₃N₂S][N(SO₂CF₃)₂] (mol. wt. 413.38) requires C, 20.34; H, 3.17; N, 10.16; S, 23.27%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.96 (2H, s), 3.18 (2H, q), 2.93 (6H, d), 1.28 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 166.8 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 30.6 (N-C) 25.1, 13.6 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 133.1 (100%, [C₅H₁₃N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Ethyl-*N*,*N'*-tetramethylthiouronium bromide (4-Br). 4-Br was prepared using the same procedure as **2**-Br from 1,1,3,3-tetramethylthiourea (5.48 g, 0.041 mol) dissolved in ethanol at 60 °C and bromoethane (4.74 g, 0.044 mol, 1.05 eq.) as a colourless crystalline solid, mp 92 °C (Found: C, 34.64; H, 7.14; N, 11.61; S, 12.88; Br, 33.59%. [C₇H₁₇N₂S]Br (mol. wt. 241.2) requires C, 34.86; H, 7.10; N, 11.61; S, 13.29; Br,

33.13%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 3.25 (12H, s), 3.06 (2H, q), 1.23 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 173.7 (SCN₂), 43.4 (N-C) 28.4, 14.6 (terminal CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 161.1 (100%, [C₇H₁₇N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Ethyl-*N*,*N'*-tetramethylthiouronium bis{(trifluoromethyl)-sulfonyl}imide (4-NTf₂). The metathesis of 4-Br (5.46 g, 0.023 mol) in water with Li[NTf₂] (6.5 g, 0.023 mol) in water resulted in the separation of 4-NTf₂ as a colourless liquid, which was washed with water and dried *in vacuo* (Found: C, 24.69; H, 3.47; N, 9.86; S, 22.04%. [C₇H₁₇N₂S][N(SO₂CF₃)₂] (mol. wt. 441.44) requires C, 24.49; H, 3.88; N, 9.52; S, 21.79%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 3.25 (12H, s), 3.06 (2H, q), 1.23 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 173.9 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 43.2 (N-C), 28.3, 14.5 (terminal CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 161.1 (100%, [C₇H₁₇N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Ethyl-*N*,*N'*-diethylthiouronium bromide (5-Br). 5-Br was prepared using the same procedure as **2**-Br from 1,3-diethylthiourea (5.48 g, 0.041 mol) dissolved in ethanol at 60 °C and bromoethane (4.74 g, 0.044 mol, 1.05 eq.) as a colourless liquid which slowly solidified on standing, mp 40 °C (Found: C, 34.22; H, 6.86; N, 10.62; S, 13.03; Br, 32.51%. [C₇H₁₇N₂S]Br (mol. wt. 241.2) requires C, 34.86; H, 7.1; N, 11.61; S, 13.29; Br, 33.13%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 9.34 (1H, s), 9.06 (1H, s), 3.43 (4H, m), 3.32 (2H, q), 1.25 (3H, t), 1.15 (6H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 164.4 (SCN₂), 25.9 (N-C), 14.6, 13.7, 13.1 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 161.1 (100%, [C₇H₁₇N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Ethyl-N,N'-diethylthiouronium ethylsulfate (5-EtSO₄). 5-EtSO₄ was prepared using the same procedure as 3-EtSO₄ from 1,3-diethylthiourea and diethylsulfate in toluene yielding a homogeneous reaction solution. Toluene and unreacted excess diethylsulfate were removed under reduced pressure at 60 °C, and the resulting colourless ionic liquid was washed twice with hexane, and then finally dried in vacuo to yield the product as a colourless liquid. (Found: C, 37.63; H, 7.91; N, 9.29; S, 22.10%. $[C_7H_{17}N_2S][C_2H_5SO_4]$ (mol. wt. 286.4) requires C, 37.74; H, 7.74; N, 9.78; S, 22.35%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 9.14, 8.86 (2H, d, $J_{NH}^1 = 140$ Hz, $2 \times NH$), 3.76 (4H, q, O-C H_2 CH₃), 3.41 (4H, m, 2 × $N-CH_2CH_3$), 3.24 (2H, q, $S-CH_2CH_3$), 1.27 (3H, t, O-CH₂C H_3), 1.16 (6H, t, 2 × N-CH₂C H_3), 1.11 (3H, t, S-CH₂C H_3); δ_C (125 MHz, DMSO- d_6) 164.4 (SCN₂), 25.9 (N-C), 14.6, 13.7, 13.1 (terminal CH₃).

S-Ethyl-*N*,*N'*-diethylthiouronium bis{(trifluoromethyl)sulfonyl}-imide (5-NTf₂). The metathesis of 5-Br (4.83 g, 0.023 mol) in water with Li[NTf₂] (6.5 g, 0.023 mol) resulted in the separation of 5-NTf₂ as a colourless liquid, mp not detected (Found: C, 24.54; H, 3.78; N, 9.97; S, 21.8%. [C₇H₁₇N₂S][N(SO₂CF₃)₂] (mol. wt. 441.44) requires C, 24.49; H, 3.88; N, 9.52; S, 21.79%); $δ_H$ (500 MHz, DMSO- d_6) 9.13 (1H, s), 8.87 (1H, s), 3.38 (4H, m), 3.22 (2H, q), 1.28 (3H, t), 1.16 (6H, t); $δ_C$ (125 MHz, DMSO- d_6) 164.8 (SCN₂), 119.4 (q, J_{CF} = 320 Hz), 25.7 (N-C) 14.4, 13.6,

12.9 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 161.1 (100%, $[C_7H_{17}N_2S]^+$); -ve mode: 279.9 (100%, $[C_2NO_4F_6S_2]^-$).

S-Butyl-thiouronium bromide (6-Br). 6-Br was prepared using the same procedure as **2**-Br from thiourea (17.0 g, 0.223 mol) and bromobutane (32 g, 0.234 mol) in ethanol heated at 60 °C for 48 h. Ethanol and excess bromobutane were removed under reduced pressure at 70 °C, and then *in vacuo* to yield a colourless crystalline solid, mp 83 °C (Found: C, 28.34; H, 5.82; N, 13.28; S, 14.80%. [C₄H₁₃N₂S]Br (mol. wt. 213.1) requires C, 28.18; H, 6.15; N, 13.14; S, 15.04%); δ_H (500 MHz, CDCl₃) 7.42, 7.22 (br d, 2H, $J_{\rm NH}$ = 102 Hz, 2 × N*H*), 3.16 (t, 2H, S-C*H*₂), 1.51 (2H, q, SCH₂-C*H*₂), 1.34 (2H, q, SCH₂CH₂-C*H*₂), 0.85 (3H, t, -C*H*₃); δ_C (75 MHz, CDCl₃) 170.3 (S*C*N₂), 119.45 ($J_{\rm CF}$ = 320 Hz, -*C*F₃), 30.9, 29.5, 20.7, 12.9 (S-butyl chain). ESI-MS (CH₃CN/H₂O); +ve mode: 133.1 (100%, [C₅H₁₃N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Butyl-thiouronium bis{(trifluoromethyl)sulfonyl}imide (6-[NTf₂]). The metathesis of 6-Br (16.68 g, 0.04 mol) in water (100 cm³) with Li[NTf₂] (14.4 g, 0.05 mol) resulted in the separation of 6-NTf₂ as a colourless liquid which was isolated, dried under reduced pressure then in vacuo, and then stored at 4 °C overnight, resulting in solidification as a colourless crystalline mass, mp 49 °C (Found: C, 20.19; H, 3.50; N, 9.03; S, 23.39%. $[C_4H_{13}N_2S][N(SO_2CF_3)_2]$ (mol. wt. 413.3) requires C, 20.34; H, 3.17; N, 10.17; S, 23.27%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.50, 6.82 (4H, br d, $J_{NH} = 340 \text{ Hz}$, $2 \times NH_2$), 3.10 (2H, t, J = 7.3 Hz, S-CH₂), 1.73 (2H, q, J = 7.3 Hz, SCH_2-CH_2), 1.45 (2H, q, J = 7 Hz, $SCH_2CH_2-CH_2$), 0.92 (3H, t, J = 7.1 Hz, -CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 133.1 (100%, $[C_5H_{13}N_2S]^+$); -ve mode: 279.9 (100%, $[N(SO_2CF_3)_2]^-).$

S-Butyl-N.N'-dimethylthiouronium bromide (7-Br), 7-Br was prepared using the same procedure as 2-Br from 1,3-dimethylthiourea (20 g, 0.2 mol) and bromobutane (32.7 g, 0.23 mol) in ethanol, heating at 60 °C overnight. The solvent and excess bromobutane were removed under reduced pressure at 70 °C and then in vacuo to give the product as a colourless liquid that crystallised slowly on standing at room temperature as a colourless solid, mp 60 °C (Found: C, 34.63; H, 7.28; N, 11.33; S, 13.04%. [C₇H₁₇N₂S]Br (mol. wt. 241.2) requires C, 34.86; H, 7.10; N, 11.61; S, 13.29%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 9.05 (b, 2H, 2 × NH), 3.23 (2H, t, S-CH₂), 2.95 (6H, d, $J_{NH}^2 = 11.6$ Hz, 2 × N-C H_3), 1.60 (2H, m, SCH₂-CH₂), 1.40 (2H, m, SCH₂CH₂-CH₂), 0.90 (3H, t, -C H_3); δ_C (125 MHz, DMSO- d_6) 167.2, 31.2, 30.7, 30.4, 21.4, 13.7. ESI-MS (CH_3CN/H_2O); +ve mode: 161.1 $(100\%, [C_7H_{17}N_2S]^+)$; -ve mode: 78.9 (100%), ⁷⁹Br⁻; 80.9 (100%), $^{81}Br^{-}$).

S-Butyl-*N*,*N'*-dimethylthiouronium (7-NTf₂). The metathesis of 7-Br (24.6 g, 0.102 mol) in water (50 cm³) with Li[NTf₂] (29.0 g, 0.101 mol) in water (25 cm³) with stirring resulted in the separation of 7-NTf₂ as a dense colourless liquid (33.8 g, 75% isolated yield) (Found: C, 24.85; H, 4.22; N, 9.63; S, 22.13%. [C₇H₁₇N₂S][N(SO₂CF₃)] (mol. wt. 441.4) requires C, 24.49; H, 3.88; N, 9.52; S, 21.79%); $δ_H$ (500 MHz, CDCl₃)

7.42, 7.22 (br d, 2H, $J_{NH} = 102$ Hz, $2 \times NH$), 3.11 (m, 8H, $2 \times N-CH_3+S-CH_2$), 1.69 (2H, q, SCH_2-CH_2), 1.47 (2H, q, $SCH_2-CH_2-CH_2$), 0.96 (3H, t, $-CH_3$).

S-Butyl-*N*,*N'*-tetramethylthiouronium bromide (8-Br). 8-Br was prepared from 1,3-tetramethylthiourea (9.82 g, 0.074 mol) and bromobutane (10.7 g, 0.078 mol) with heating at 80 °C overnight. The solvent and excess bromobutane were removed under reduced pressure at 70 °C and then *in vacuo* to give the product as a colourless crystalline solid, mp 82 °C (Found: C, 39.59; H, 7.30; N, 10.79; S, 11.15%. [C₉H₂₁N₂S]Br (mol. wt. 269.2) requires C, 40.15; H, 7.86; N, 10.40; S, 11.91%). $δ_C$ (125 MHz, CDCl₃- d_6) 175.81, 44.86, 35.04, 31.37, 21.78, 13.52. ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₉H₂₁N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Butyl-*N*,*N'*-tetramethylthiouronium bis{(trifluoromethyl)-sulfonyl}mide 8-NTf₂. The metathesis of 8-Br (11.5 g, 0.043 mol) and Li[NTf₂] (12.2 g, 0.043 mol) in water (50 cm³) resulted in the separation of 8-NTf₂ as a pale yellow liquid (Found: C, 28.17; H, 4.96; N, 8.77; S, 20.12%. [C₉H₂₁N₂S][N(SO₂CF₃]₂] (mol. wt. 469.5) requires C, 28.14; H, 4.51; N, 8.95; S, 20.49%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 3.30 (12H, s), 2.98 (2H, t, S-CH₂), 1.66 (2H, q, SCH₂-CH₂), 1.43 (2H, q, SCH₂CH₂-CH₂), 0.94 (3H, t, -CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₉H₂₁N₂S]⁺); -ve mode: 279.9 (100%, [N(SO₂CF₃)₂]⁻).

S-Butyl-*N*,*N'*-diethylthiouronium bromide (9-Br). 9-Br was prepared from 1,3-diethylthiourea (39.8 g, 0.3 mol) and bromobutane (41.97 g, 0.3 mol) with heating at 80 °C overnight as a viscous liquid (Found: C, 39.89; H, 7.88; N, 10.16; S, 11.33%. [C₀H₂₁N₂S]Br (mol. wt. 269.2) requires C, 40.15; H, 7.86; N, 10.40; S, 11.91%). $δ_C$ (125 MHz, DMSO- d_0) 165.1, 31.4, 30.6, 21.7, 15.1, 13.7, 13.6. ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₀H₂₁N₂S]⁺); −ve mode: 78.9 (100%, 79 Br[−]), 80.9 (100%, 81 Br[−]).

S-Butyl-*N*,*N*'-diethylthiouronium bis{(trifluoromethyl)sulfonyl}imide 9-NTf₂. The metathesis of 9-Br (23.5 g, 0.087 mol) and Li[NTf₂] (25 g) in water (150 cm³) resulted in the separation of 9-NTf₂ as a pale yellow liquid (Found: C, 29.98; H, 4.91; N, 9.36; S, 18.83%. [C₉H₂₁N₂S][N(SO₂CF₃]₂] (mol. wt. 469.5) requires C, 28.14; H, 4.51; N, 8.95; S, 20.49%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.62, 7.17 (2H, br d, $J_{\rm NH}$ = 225 Hz, 2 × N*H*), 3.53 (4H, q, 2 × N-C*H*₂), 3.16 (2H, t, S-C*H*₂), 1.71 (2H, q, SCH₂-C*H*₂), 1.35 (2H, q, SCH₂CH₂-C*H*₂), 1.33 (t, 6H, 2 × NCH₂-C*H*₃), 0.96 (3H, t, -C*H*₃). ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₉H₂₁N₂S]⁺); -ve mode: 279.9 (100%, [N(SO₂CF₃)₂]⁻).

S-Hexylthiouronium bromide (10-Br). 10-Br was prepared using the same procedure as 2-Br from thiourea (3.16 g, 0.042 mol) and bromohexane (7.19 g, 0.044 mol) in ethanol, heating at 60 °C overnight. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then *in vacuo* to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless solid, mp 86 °C (Found: C, 34.8; H, 6.8; N, 11.1; S, 13.25; Br, 34.2%. [C₇H₁₇N₂S]Br (mol. wt. 241.2) requires C, 34.86; H,

7.10; N, 11.61; S, 13.29; Br, 33.13%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.99 (4H, s), 3.13 (2H, t), 1.58 (2H, m), 1.3 (6H, m), 0.86 (3H, t). $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 169.8 (SCN₂), 30.4, 30.0, 28.2, 27.3, 21.8, 13.8 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 161.1 (100%, [C₇H₁₇N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Hexylthiouronium bis{(trifluoromethyl)sulfonyl}imide (10-NTf₂). The metathesis of 10-Br (5.46 g, 0.023 mol) in water with Li[NTf₂] (6.5 g, 0.023 mol) resulted in the separation of 10-NTf₂ as a colourless liquid. (Found: C, 24.8; H, 3.82; N, 9.92; S, 22.08%. [C₇H₁₇N₂S][N(SO₂CF₃)₂] (mol. wt. 441.44) requires C, 24.49; H, 3.88; N, 9.52; S, 21.79%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.94 (4H, s), 3.12 (2H, t), 1.59 (2H, m), 1.28 (6H, m), 0.86 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 169.8 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 30.4, 30.0, 28.2, 27.3, 21.8, 13.7 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 161.1 (100%, [C₇H₁₇N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Hexyl-N,N'-dimethylthiouronium bromide (11-Br). 11-Br was prepared using the same procedure as 2-Br from 1,3dimethylthiourea (3.87 g, 0.037 mol) and bromohexane (6.44 g, 0.039 mol) in ethanol, heating at 60 °C overnight. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then in vacuo to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless solid, mp 95 °C (Found: C, 40.25; H, 8.07; N, 10.67; S, 11.93; Br, 30.22%. [C₉H₂₁N₂S]Br (mol. wt. 269.25) requires C, 40.15; H, 7.86; N, 10.40; S, 11.91; Br, 29.68%); $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 9.18 (1H, s), 9.02 (1H, s), 3.26 (2H, t), 2.94 (6H, s), 1.59 (2H, m), 1.3 (6H, m), 0.85 (3H, t); δ_C (125 MHz, DMSO-d₆) 166.8 (SCN₂), 30.6 (N-C), 30.4, 27.8, 27.4, 21.8, 13.7 (terminal CH₃); ESI-MS (CH₃CN/H₂O); + ve mode: 189.1 (100%, $[C_9H_{21}N_2S]^+$); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Hexyl-*N*,*N*'-dimethylthiouronium bis{(trifluoromethyl)-sulfonyl}imide (11-NTf₂). The metathesis of 11-Br (5.74 g, 0.021 mol) in water with Li[NTf₂] (6.12 g, 0.021 mol) resulted in the separation of 11-NTf₂ as a colourless liquid (Found: C, 28.19; H, 4.29; N, 9.32; S, 20.69%. [C₉H₂₁N₂S][N(SO₂CF₃)₂] (mol. wt. 469.49) requires C, 28.14; H, 4.51; N, 8.95; S, 20.49%; $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 8.95 (2H, s), 3.16 (2H, t), 2.93 (6H, d), 1.61 (2H, m), 1.29 (6H, m), 0.86 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 166.8 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 30.6 (N-C), 30.4, 27.8, 27.4, 21.8, 13.7 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₉H₂₁N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Hexyl-N,N'-tetramethylthiouronium bromide (12-Br). 12-Br was prepared using the same procedure as 2-Br from 1,3-tetramethylthiourea (4.45 g, 0.034 mol) and bromohexane (5.83 g, 0.035 mol) in ethanol, heating at 60 °C overnight. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then *in vacuo* to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless solid, mp 73 °C (Found: C, 43.96; H, 8.71; N, 9.66; S, 10.73; Br, 25.51%. [C₁₁H₂₅N₂S]Br (mol. wt. 297.30) requires C, 44.44; H, 8.48; N, 9.42; S, 10.78; Br, 26.88%; δ_H (500 MHz, DMSO-d₆) 3.23 (12H, s), 3.03 (2H, t), 1.58 (2H, m),

1.29 (6H, m), 0.87 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- $d_{\rm 6}$) 174.1 (SCN₂), 43.3 (N-C), 33.7, 30.5, 29.0, 27.4, 21.8, 13.7 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 217.2 (100%, $[{\rm C}_{11}{\rm H}_{25}{\rm N}_2{\rm S}]^+$); -ve mode: 78.9 (100%, $^{79}{\rm Br}^-$), 80.9 (100%, $^{81}{\rm Br}^-$).

S-Hexyl-*N*,*N*'-tetramethylthiouronium bis{(trifluoromethyl)-sulfonyl}imide (12-NTf₂). The metathesis of 12-Br (5.98 g, 0.02 mol) in water with Li[NTf₂] (5.78 g, 0.02 mol) resulted in the separation of 12-NTf₂ as a colourless liquid (Found: C, 31.36; H, 5.26; N, 8.27; S, 19.32%. [C₁₁H₂₅N₂S][N(SO₂CF₃)₃] (mol. wt. 497.55) requires C, 31.38; H, 5.06; N, 8.45; S, 19.33%); δ_H (500 MHz, DMSO-d₆) 3.23 (12H, s), 3.03 (2H, t), 1.58 (2H, m), 1.29 (6H, m), 0.87 (3H, t); δ_C (125 MHz, DMSO-d₆) 174.1 (SCN₂), 119.4 (q, J_{CF} = 320 Hz), 43.3 (N-C), 33.7, 30.5, 29.0, 27.5, 21.8, 13.7 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 217.2 (100%, [C₁₁H₂₅N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Hexyl-N,N'-diethylthiouronium bromide (13-Br). 13-Br was prepared using the same procedure as 2-Br from 1,3-diethylthiourea (4.45 g, 0.034 mol) and bromohexane (5.83 g, 0.035 mol) in ethanol, heating at 60 °C overnight. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then in vacuo to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless liquid that solidified on standing at room temperature, mp 49 °C (Found: C, 44.33; H, 8.05; N, 8.97; S, 10.82; Br, 27.2%. [C₁₁H₂₅N₂S]Br (mol. wt. 297.30) requires C, 44.44; H, 8.48; N, 9.42; S, 10.78; Br, 26.88%); $\delta_{\rm H}$ (500 MHz, DMSO-d₆) 9.29 (1H, s), 9.03 (1H, s), 3.43 (4H, m), 3.27 (2H, t), 1.59 (2H, m), 1.28 (12H, m), 0.85 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO-d₆) 164.7 (SCN₂), 31.2 (N-C) 30.4, 28.0, 27.3, 21.8, 14.6, 13.7, 13.1 (terminal CH₃); ESI-MS (CH₃CN/H₂O); + ve mode: 217.2 (100%, $[C_{11}H_{25}N_2S]^+$); -ve mode: 78.9 $(100\%, ^{79}Br^{-}), 80.9 (100\%, ^{81}Br^{-}).$

S-Hexyl-*N*,*N*'-diethylthiouronium bis{(trifluoromethyl)sulfonyl}-imide (13-NTf₂). The metathesis of 13-Br (5.98 g, 0.02 mol) in water with Li[NTf₂] (5.77 g, 0.02 mol) resulted in the separation of 13-NTf₂ as a colourless liquid (Found: C, 31.44; H, 4.86; N, 8.69; S, 19.04%. [C₁₁H₂₅N₂S][N(SO₂CF₃)₂] (mol. wt. 497.55) requires C, 31.38; H, 5.06; N, 8.45; S, 19.29%); $δ_{\rm H}$ (500 MHz, DMSO- d_6) 9.13 (1H, s), 8.88 (1H, s), 3.38 (4H, m), 3.2 (2H, t), 1.6 (2H, m), 1.28 (6H, m) 1.16 (6H, t), 0.86 (3H, t); $δ_{\rm C}$ (125 MHz, DMSO- d_6) 165.0 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 31.0 (N-C), 30.4, 27.9, 27.3, 21.8, 14.5, 13.7, 13.0 (terminal CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 217.2 (100%, [C₁₁H₂₅N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Octylthiouronium bromide (14-Br). 14-Br was prepared using the same procedure as 2-Br from thiourea (18.8 g, 0.194 mol) and bromooctane (37.5 g, 0.194 mol) in ethanol (100 cm³) heating at 60 °C for 24 h. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then *in vacuo* to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless liquid that solidified on standing at room temperature, mp 96 °C (Found: C, 39.94; H, 7.80; N, 10.10; S, 11.50%.

[C₉H₂₁N₂S]Br (mol. wt. 269.2) requires C, 40.15; H, 7.86, N, 10.40, S, 11.91%); $\delta_{\rm H}$ (500 MHz, DMSO- $d_{\rm 6}$) 9.07, 8.99 (4H, br d, 2 × N H_2), 3.15 (2H, t, S-C H_2), 1.57 (2H, q, SCH₂-C H_2), 1.35 (2H, m, S-CH₂CH₂-C H_2), 1.25 (8H, m, -(C H_2)₄-), 0.85 (3H, t, -C H_3); $\delta_{\rm C}$ (125 MHz, DMSO- $d_{\rm 6}$) 170.3, 31.5, 30.5, 28.9, 28.7, 28.1, 22.4, 14.3. ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₉H₂₁N₂S]⁺); -ve mode: 78.9 (100%, ⁷⁹Br⁻), 80.9 (100%, ⁸¹Br⁻).

S-Octylthiouronium bis{(trifluoromethyl)sulfonyl}imide (14-NTf₂). The metathesis of 14-Br (17.0 g, 0.063 mol) in water with Li[NTf₂] (18.1 g, 0.063 mol) resulted in the separation of 14-NTf₂ as a colourless liquid (Found: C, 27.73; H, 4.64; N, 8.52; S, 20.19%. [C₉H₂₁N₂S][N(SO₂CF₃]₂] (mol. wt. 469.5) requires C, 28.14; H, 4.51, N, 8.95, S, 20.49%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.70, 6.98 (4H, br d, $J_{\rm NH}$ = 360 Hz, 2 × NH₂), 3.08 (2H, t, J = 7.3 Hz, S-CH₂), 1.68 (2H, q, J = 7.3 Hz, SCH₂-CH₂), 1.40 (2H, q, J = 7 Hz, SCH₂CH₂-CH₂), 1.29 (8H, br m, -(CH₂)₄-), 0.88 (3H, t, J = 7.1 Hz, -CH₃); $\delta_{\rm C}$ (125 MHz, CDCl₃) 173.1 (SCN₂), 119.9 (q, $J_{\rm CF}$ = 320 Hz), 32.0 (N-C), 31.8, 29.3, 29.2, 28.7, 28.2, 23.0, 14.4 (terminal CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 189.1 (100%, [C₉H₂₁N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Octyl-N,N'-dimethylthiouronium bromide (15-Br). 15-Br was prepared using the same procedure as 2-Br from 1.3dimethylthiourea (15.0 g, 0.15 mol) and bromooctane (32.0 g, 0.166 mol) in ethanol (75 cm³) heating at 60 °C for 24 h. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then in vacuo to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless liquid that solidified on standing at room temperature, mp 54 °C (Found: C, 44.61; H, 8.17; N, 9.13; S, 10.44%. [C₁₁H₂₅N₂S]Br (mol. wt. 297.3) requires C, 44.44; H, 8.48; N, 9.42; S, 10.78%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 9.13, 9.94 (2H, br d, $J_{NH} = 90 \text{ Hz}, 2 \times NH$), 3.22 (2H, m, S-C H_2), 2.95 (6H, d, $J_{NH}^2 = 12.7$ Hz, $2 \times NCH_3$), 1.61 (2H, m, SCH_2-CH_2), 1.37 (2H, m, $SCH_2-CH_2-CH_2$), 1.26 (8H, m, $-CH_2$)₄-), 0.87 (3H, t, $-CH_3$); δ_C (125 MHz, DMSO- d_6) 167.2 (SCN₂), 31.5, 31.2, 31.1, 31.0, 28.9, 28.7, 28.4, 28.2, 22.4, 14.3 (terminal CH_3). ESI-MS (CH_3CN/H_2O); +ve mode: 217.2 $(100\%, [C_{11}H_{25}N_2S]^+)$; -ve mode: 78.9 $(100\%, ^{79}Br^-)$, 80.9 $(100\%, {}^{81}\text{Br}^{-}).$

S-Octyl-*N*,*N'*-dimethylthiouronium bis{(trifluoromethyl)-sulfonyl}imide (15-NTf₂). The metathesis of 15-Br (12.5 g, 0.042 mol) in water (75 cm³) with Li[NTf₂] (12.5 g, 0.043 mol) resulted in the separation of 15-NTf₂ as a pale yellow liquid (17.8 g, 85% isolated yield). (Found: C, 31.02; H, 5.75; N, 8.41; S, 19.18%. [C₁₁H₂₅N₂S][N(SO₂CF₃)₂] (mol. wt. 497.5) requires C, 31.28; H, 5.06, N, 8.45, S, 19.33%); $δ_{\rm H}$ (500 MHz, DMSO- d_6) 7.43, 7.22 (2H, br d, $J_{\rm NH}$ = 105 Hz, 2 × N*H*), 3.11 (m, 8H, 2 × N-C*H*₃ + S-C*H*₂), 1.71 (2H, q, SCH₂-C*H*₂), 1.33 (2H, q, SCH₂CH₂-C*H*₂), 1.31 (8H, m, -(C*H*₂)₄-), 0.88 (3H, t, J = 7.2 Hz, -C*H*₃).

S-Octyl-1,1,3,3-tetramethylthiouronium bromide (16-Br). 16-Br was prepared using the same procedure as 2-Br from 1,1,3,3-tetramethylthiourea (4.06 g, 0.031 mol) and bromooctane (6.23 g, 0.032 mol) ethanol (100 cm³) heating at 60 °C

for 24 h. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then *in vacuo* to give the product as a colourless liquid that crystallised on cooling to room temperature as a colourless liquid that solidified on standing at room temperature, mp 79 °C (Found: C, 47.15; H, 9.2; N, 8.73; S, 9.81; Br, 24.41%. [C₁₃H₂₉N₂S]Br (mol. wt. 325.36) requires C, 47.88; H, 8.98; N, 8.61; S, 9.86; Br, 24.56%); $\delta_{\rm H}$ (500 MHz, DMSO- $d_{\rm 6}$) 3.23 (12H, s), 3.02 (2H, t), 1.58 (2H, t), 1.25 (10H, m), 0.86 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- $d_{\rm 6}$) 174.0 (SCN₂), 43.4 (N-C), 33.7, 31.1, 29.1, 28.3, 27.8, 22.0, 13.9 (terminal CH₃); ESI-MS (CH₃CN/H₂O); +ve mode: 245.2 (100%, [C₁₃H₂₉N₂S]⁺); -ve mode: 78.9 (100%, [Br]⁻).

S-Octyl-*N*,*N'*-tetramethylthiouronium bis{(trifluoromethyl)-sulfonyl}imide (16-NTf₂). The metathesis of 16-Br (6.19 g, 0.019 mol) in water (75 cm³) with Li[NTf₂] (5.46 g, 0.019 mol) resulted in the separation of 16-NTf₂ as a colourless liquid (Found: C, 34.61; H, 5.49; N, 7.92; S, 18.80%. [C₁₂H₂₉N₂S][N(SO₂CF₃)₂] (mol. wt. 525.6) requires C, 34.28; H, 5.56; N, 8.00; S, 18.30%); $\delta_{\rm H}$ (500 MHz, DMSO- d_6) 3.23 (12H, s), 3.02 (2H, t), 1.58 (2H, t), 1.25 (10H, m), 0.86 (3H, t); $\delta_{\rm C}$ (125 MHz, DMSO- d_6) 174.22 (SCN₂), 119.4 (q, $J_{\rm CF}$ = 320 Hz), 43.3 (N-C), 33.7, 31.1, 29.1, 28.3, 27.8, 21.9, 13.8 (terminal CH₃). ESI-MS (CH₃CN/H₂O); +ve mode: 245.2 (100%, [C₁₃H₂₉N₂S]⁺); -ve mode: 279.9 (100%, [C₂NO₄F₆S₂]⁻).

S-Octyl-N,N'-diethylthiouronium bromide (17-Br). 17-Br was prepared using the same procedure as 2-Br from 1,3-diethylthiourea (22.2 g, 0.16 mol) and bromooctane (32.0 g, 0.166 mol) in ethanol (100 cm³) heating at 60 °C for 24 h. The solvent and excess bromohexane were removed under reduced pressure at 70 °C and then in vacuo to give the product as a clear golden liquid (Found: C, 47.89; H, 8.21; N, 8.52; S, 8.88%. $[C_{13}H_{29}N_2S]Br$ (mol. wt. 325.4) requires C, 47.99; H, 8.98, N, 8.61, S, 9.85%); $\delta_{\rm H}$ (500 MHz, DMSO- $d_{\rm 6}$) 9.17 (2H, d, J_{NH} = 135 Hz, 2 × NH), 3.26 (4H, m, 2 × $N-CH_2CH_3$), 3.29 (2H, t, S-CH₂), 1.59 (2H, m, SCH₂-CH₂), 1.36 (2H, m, SCH₂CH₂-CH₂), 1.25 (8H, m, -(CH₂)₄-), 1.16 (6H, m, 2 × NCH₂-CH₃), 0.85 (3H, t, -CH₃); δ_C (125 MHz, DMSO-*d*₆) 165.2, 31.7, 31.5, 28.8, 28.7, 28.5, 28.1, 22.4, 15.1, 14.3, 13.6. ESI-MS (CH₃CN/H₂O); +ve mode: 245.2 $(100\%, [C_{13}H_{29}N_2S]^+)$; -ve mode: 78.9 $(100\%, ^{79}Br^-)$, 80.9 $(100\%, {}^{81}\text{Br}^{-}).$

S-Octyl-*N*,*N'*-diethylthiouronium bis{(trifluoromethyl)sulfonyl}-imide (17-NTf₂). The metathesis of 17-Br (19.3 g, 0.059 mol) in water (100 cm³) with Li[NTf₂] (18.7 g, 0.065 mol) resulted in the separation of 17-NTf₂ as a pale yellow liquid (Found: C, 37.00; H, 6.37; N, 7.85; S, 16.95%. [C₁₃H₂₉N₂S][N(SO₂CF₃]₂] (mol. wt. 535.6) requires C, 34.28; H, 5.56, N, 7.99, S, 18.30%); $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.86, 7.35 (2H, br d, $J_{\rm NH}$ = 255 Hz, 2 × N*H*), 3.55 (4H, b, 2 × N-C*H*₂), 3.26 (t, 3H, S-C*H*₂), 1.68 (2H, q, J = 7.3 Hz, SCH₂-C*H*₂), 1.45 (2H, q, J = 7 Hz, SCH₂CH₂-C*H*₂), 1.28 (br m, 14H, 2 × NCH₂-C*H*₃+-(C*H*₂)₄-), 0.88 (t, 3H, J = 7.1 Hz, -C*H*₃).

Analysis

Microanalyses and electrospray mass spectroscopy were performed by A.S.E.P., QUB. ¹H NMR spectra were recorded

on Bruker Avance DRX 500 and DPX 300 spectrometers in either DMSO- d_6 or CDCl₃. Melting points and glass transition temperatures were determined by differential scanning calorimetry (TA DSC Q2000 with either liquid nitrogen cryostatic cooling or a refrigerated cooling system, 5–20 mg samples, 5 °C min⁻¹ heating and cooling rates under nitrogen, scanning between -100 and +100 °C). Transitions above ambient were confirmed optically by hot-stage polarising optical microscopy (Olympus BX50 microscope equipped with a Linkam TH600 hot stage and TP92 temperature controller). Thermal decomposition profiles were collected by thermogravimetric analysis (TA TGA Q5000 using a 5 °C min⁻¹ heating ramp under nitrogen). Densities were determined at 10 °C intervals between 20 and 90 °C, using a Metler Toledo DE40 oscillating tube densitometer. Sample size was 1 cm³. Measurements of kinematic viscosity were carried out over the temperature range 20 to 95 °C using a Brookfield DV-II+ cone and plate viscometer, equipped with a Grant LTD6G circulating heater. Electrochemical experiments were carried out in a 10 cm³ glass cell with 3 g of ionic liquid. Cyclic voltammogram experiments were recorded with a PC-controlled microAutolab Type III Potentiostat (Eco-Chemie, Netherlands), and performed in a three-electrode arrangement with a platinum (1.5 mm diameter) as the working electrode, a bright platinum coil as the counter electrode, and all potentials measured with respect to a 0.01 M Ag⁺/Ag reference, with AgNO₃ dissolved 1-butyl-3-methylimidazolium nitrate and separated from the bulk solution via a glass frit. The IR-drop was uncompensated. The platinum working electrode was polished using alumina slurry (Kemet, UK) of decreasing particle size (from 5 μm to 0.1 μm) on soft lapping pads. Prior to all experiments, solutions were purged by bubbling dry argon for at least 10 min. A positive pressure of inert gas was maintained above the surface of the electrolyte throughout the experiments.

For the experimental determination of the mutual miscibility limits of the immiscible binary mixtures of dodecane, octane and toluene with the ionic liquids, compositions lying on the immiscible region were introduced inside a jacketed glass cell. The temperature was controlled using a thermostated water bath and was checked by means of a thermometer with an accuracy of $\pm 1 \times 10^{-1}$ K. All the mixtures were vigorously stirred for at least 1 h, and then allowed to settle for a minimum of 4 h to guarantee that the equilibrium state was completely reached. The indicated times were fixed according to results from preliminary tests. A sample of each layer in equilibrium was withdrawn using glass syringes with coupled stainless steel needles. Then the samples were dissolved in DMSO- d_6 inside NMR-tubes, which were properly sealed. The composition of these samples was determined by proton nuclear magnetic resonance spectroscopy (¹H NMR) by comparison of the relative integrals of the signals from the cations and hydrocarbons.

Acknowledgements

The authors wish to thank Petroliam Nasional Berhad (PETRONAS) for financial support.

References

- 1 Ionic Liquids in Synthesis, ed. P. Wasserchied and T. Welton, Wiley-VCH, Weinheim, Germany, 2nd edn, 2008; T. Welton, Chem. Rev., 1999, 99, 2071.
- 2 J. F. Wishart, Energy Environ. Sci., 2009, 2, 956; F. Zhou, Y. M. Liang and W. M. Liu, Chem. Soc. Rev., 2009, 28, 2590; M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nat. Mater., 2009, 8, 621; S. M. Zakeeruddin and M. Gratzel, Adv. Funct. Mater., 2009, 19, 2187; J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin and R. D. Noble, Ind. Eng. Chem. Res., 2009, 48, 2739; A. Pinkert, K. N. Marsh, S. Pang and M. P. Staiger, Chem. Rev., 2009, 109, 6712.
- 3 C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen and T. G. A. Youngs, Acc. Chem. Res., 2007, 40, 1146.
- 4 H. Ohno, Bull. Chem. Soc. Jpn., 2006, 79, 1665.
- 5 Y. Gao, S. W. Arritt, B. Twamley and J. M. Shreeve, *Inorg. Chem.*, 2005, **44**, 1704; D. E. Chavez, M. A. Hiskey and R. D. Gilardi, *Org. Lett.*, 2004, **6**, 2889.
- 6 H. B. Xie, S. B. Zhang and H. F. Duan, Tetrahedron Lett., 2004, 45, 2013; H. B. Xie, H. F. Duan, S. Li and S. B. Zhang, New J. Chem., 2005, 29, 1199; S. H. Li, Y. J. Lin, H. B. Xie, S. B. Zhang and J. N. Xu, Org. Lett., 2006, 8, 391; X. Xin, X. Guo, H. F. Duan, Y. J. Lin and H. Sun, Catal. Commun., 2007, 8, 115
- 7 W. Wu, B. Han, H. Gao, Z. Liu, T. Jiang and J. Huang, Angew. Chem., Int. Ed., 2004, 43, 2415; S. Zhang, X. Yuan, Y. Chen and X. Zhang, J. Chem. Eng. Data, 2005, 50, 1582; X. Yuan, S. Zhang, Y. Chen, X. Lu, W. Dai and R. Mori, J. Chem. Eng. Data, 2006, 51, 645.
- 8 N. Kopidakis, N. R. Neale and A. J. Frank, J. Phys. Chem. B, 2006, 110, 12485; P. Wang, S. Zakeeruddin, M. Gratzel, W. Kantlehner, J. Mezger, E. V. Stoyanov and O. Scherr, Appl. Phys. A: Mater. Sci. Process., 2004, 79, 73.
- 9 J. Neutz, O. Grosshardt, S. Schaufele, H. Schuppler and W. Schweikert, *Propellants, Explos., Pyrotech.*, 2003, 28, 181;
 H. Kunkel and G. Maas, *Eur. J. Org. Chem.*, 2007, 3757;
 N. M. M. Mateus, L. C. Branco, N. M. T. Lourenco and C. A. M. Afonso, *Green Chem.*, 2003, 5, 347.
- 10 F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Part B: Reactions and Synthesis, Springer, New York, 8th edn, 2008, p. 238.
- 11 S. J. Angyal and W. K. Warburton, J. Chem. Soc., 1951, 2492.
- 12 K. Sueto, M. Kashahara, O. Omae and Y. Gao, US Pat. Appl., 0136332, 2005.
- 13 N. Ignyatev, U. Welz-Biermann, G. Bissky, H. Willner and A. Kucheryna, US Pat. Appl., 0287869, 2007.
- 14 A. A. J. Torriero, A. I. Siriwardana, A. M. Bond, I. M. Burgar, N. F. Dunlop, G. B. Deacon and D. R. MacFarlane, J. Phys. Chem. B, 2009, 113, 11222.
- 15 J. D. Holbrey, W. M. Reichert, R. P. Swatloski, G. A. Broker, W. R. Pitner, K. R. Seddon and R. D. Rogers, *Green Chem.*, 2002, 4, 407.
- 16 J. D. Holbrey and K. R. Seddon, J. Chem. Soc., Dalton Trans., 1999, 2133.
- 17 P. S. Kulkarni, L. C. Branco, J. G. Crespo, M. C. Nunes, A. Raymundo and C. A. M. Afonso, *Chem.–Eur. J.*, 2007, 13, 8478; N. M. M. Mateus, L. C. Branco, N. M. T. Lourenco and C. A. M. Afonso, *Green Chem.*, 2003, 5, 347.
- 18 R. L. Gardas, D. W. Rooney and C. Hardacre, Fluid Phase Equilib., 2009, 283, 31.
- 19 A. B. Pereiro, F. Santamarta, E. Tojo, A. Rodriguez and J. Tojo, J. Chem. Eng. Data, 2006, 51, 952; A. B. Pereiro, P. Verdia, E. Tojo and A. Rodriguez, J. Chem. Eng. Data, 2007, 52, 377; A. B. Pereiro, J. L. Legido and A. Rodriguez, J. Chem. Thermodyn., 2007, 39, 1168.
- 20 G. Tammann and W. Hesse, Z. Anorg. Allg. Chem., 1926, 156, 245; G. S. Fulcher, J. Am. Ceram. Soc., 1925, 8, 339; H. Vogel, Phys. Z., 1921, 22, 645.
- 21 R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi and C. L. Hussey, *J. Electrochem. Soc.*, 1979, 126, 1644; A. A. Fannin Jr, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. S. Stech, R. L. Vaughn, J. S. Wilkes and J. L. Williams, *J. Phys. Chem.*, 1984, 88, 2614.

- 22 J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson and J. F. Brennecke, *J. Chem. Thermodyn.*, 2005, **37**, 559.
- 23 J. N. Barisci, G. G. Wallace, D. R. MacFarlane and R. H. Baughman, *Electrochem. Commun.*, 2004, **6**, 22.
- 24 S. Chun, S. V. Dzyuba and R. A. Bartsch, Anal. Chem., 2001, 73, 3737.
- 25 M. G. Del Popolo, C. L. Mullan, J. D. Holbrey, C. Hardacre and P. Ballone, J. Am. Chem. Soc., 2008, 130, 7032; J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre and R. D. Rogers, Chem. Commun., 2003, 476.
- 26 For example, see U. Domanska, M. Krolikowska and M. Arasimowicz, J. Chem. Eng. Data, 2010, 55, 773; U. Domanska, M. Laskowska and A. Pobudkowska, J. Phys. Chem. B, 2009, 113, 6397.
- 27 C. Hardacre, J. D. Holbrey, C. L. Mullan, M. Nieuwenhuyzen, T. G. A. Youngs, D. T. Bowron and S. J. Teat, *Phys. Chem. Chem. Phys.*, 2010, 12, 1842.
- 28 G. W. Meinsdersma, A. Podt and A. B. de Haan, Fuel Process. Technol., 2005, 87, 59.
- 29 J. Q. Zhu, J. Chen, C. Y. Li and W. Y. Fei, Sep. Purif. Technol., 2007, 56, 237.
- U. Domańska, A. Pobudkowska and M. Królikowski, Fluid Phase Equilib., 2007, 259, 173.
- 31 A. Arce, M. J. Earle, S. P. Katdare, H. Rodríguez and K. R. Seddon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 2538.
- 32 J. D. Holbrey, I. Lopez-Martin, G. Rothenberg, K. R. Seddon, G. Silvero and X. Zheng, Green Chem., 2008, 10, 87.